Rational Design, Synthesis & Evaluation of Small Molecule Modulators of the Wnt/β-catenin Signalling Pathway

<u>Michael A. McCoy,^a Marc Fiedler,^b Mariann Bienz,^b Neil. J. Wells,^a Matthias G. J. Baud^{a*}</u>

mam1u17@soton.ac.uk, m.baud@soton.ac.uk

^aDepartment of Chemistry, University of Southampton, Southampton SO17 1BJ, United Kingdom

^bMRC Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom

1 - Introduction

• Wnt/β-catenin signaling pathway is fundamental in cell differentiation, cell fate determination and tissue homeostasis amongst metazoans¹

Southampton

- Mutations in this pathway are **implicated** in various diseases including osteoporosis & cancer
- In particular, aberrant signaling in this pathway is linked to 85% of CRC cases

- **2** Biophysical Evaluation of Reported Inhibitors
- There are multiple compounds in the literature which have been described to inhibit wnt/ β -catenin signalling *via* direct targeting of β -catenin
- Whilst some compounds have been described with good biophysical validation, others have been identified from phenotypic screening assays/fluorescence based assays which can be prone to false positives
- Several inhibitors described contain PAINs motifs²
- One of our research objectives is to synthesis described inhibitors and validate (or not) their direct interaction with β -catenin *via* biophysical assays (DSF, STD/wLOGSY NMR, ITC)

Scheme 1 – synthesis of toxoflavin, 3 and subsequent ITC trace³

- For the treatment of cancer, the signal transducer **β-catenin is a key,** but challenging **target**
- We are targeting β -catenin via several orthogonal approaches including probing natural product destabilisers, fragment based drug discovery and *in silico* screening

Re-screen

Validate

~20

SAR

Optimise

3 – High Throughput Fragment Screening

- Primary screening affords a subset (10² compounds) which are re-screened and validated using alternate screening methods (STD NMR)
- Validated compounds ca. 20 are investigated using ITC
- Next generation compounds are generated *via* SAR studies as well as fragment linking/merging/growing

4 - Natural Product Derivatives

- Carnosic acid, **13**, has been shown to be a potent degrader of βcatenin⁵
- The mode of action of **13** is still uncertain, and its propensity for oxidation raises some questions – namely whether **13** is responsible for the biological action observed

- stable to oxidation

Figure 2 – ARD repeats of β -catenin with PPI surface, PTM residues and PPI hotspots

• Various functional group manipulations are envisaged to oxidation resistant afford more derivatives

Figure 3 – (left) HTS workflow; (right, top) STD-NMR of fragment; (right, bottom) ITC of fragment

5 - Computational Screening

- The virtual screening workflow in glide was used to screen an in-house virtual library of 10⁶ compounds
- Removal of reactive motifs, filtering according to Lipinski's rules and sequential higher precision docking afforded *ca*. 2k compounds for visual inspection
- MMGBSA, re-screening against different PDBs, and predicted physicochemical properties were utilised to afford a shortlist of compounds to evaluate in vitro

6 - Future Work

Section 2 - Finish biophysical evaluation of reported inhibitors (manuscript in progress)

Section 3 - Finish fragment merging approach & use HTS workflow to investigate a separate compound library

Section 4 – Finish synthesis of envisaged oxidation resistant derivatives (manuscript in progress)

Section 5 – Re-screen top HTVS compounds using DSF, STD, ITC \rightarrow follow up with biological study

1. A. Klaus and W. Birchmeier, Nature Reviews Cancer 2008, 8, 387-398 2. J. B. Baell and G. A. Holloway, Journal of Medicinal Chemistry 2010, 53, 2719-2740 3. M. Lepourcelet, Y.-N. P. Chen, D. S. France, H. Wang, P. Crews, F. Petersen, C. Bruseo, A. W. Wood and R. A. Shivdasani, *Cancer Cell* 2004, 5, 91-102. 4. Ewan et al., Cancer Research, **2010**, 70, 5963-5973 5. M. de la Roche, T. J. Rutherford, D. Gupta, D. B. Veprintsev, B. Saxty, S. M. Freund and M. Bienz, Nature communications 2012, 3, 680-680.

7 - References & Acknowledgements

Rosetrees Trust

Supporting the best in medical research

